La probabilidad de que una molécula tenga su componente de velocidad en dirección x comprendida entre $v_x$ y $v_{x+dx}$, en dirección y entre $v_y$ y $v_{y+dy}$ y en dirección z entre $v_z$ y $v_{z+dz}$ vendrá dada por: \begin{equation} dN_{v_x,v_y,v_z}/N=g(v_x)g(v_y)g(v_z)dv_xdv_ydv_z \end{equation} $dN_{v_x,v_y,v_z}/N$ representa la probabilidad de que una molécula (fracción de moléculas) tenga el extremo de su vector velocidad en el interior de una caja de lados $dv_x, dv_y, dv_z$

Sustituyendo las expresiones calculadas anteriormente para las funciones de distribución en cada dirección espacial: \begin{equation} \phi(\bar{v})=g(v_x)g(v_y)g(v_z)=\left(\frac{m}{2\pi kT}\right)^{1/2}e^{-mv^2/2kT} \end{equation} Siendo, $v^2=v_x^2+v_y^2+v_z^2$, el cuadrado del módulo de la velocidad. Esta nueva función de distribución no depende de la orientación del vector, sino exclusivamente de su módulo.

We use cookies

Usamos cookies en nuestro sitio web. Algunas de ellas son esenciales para el funcionamiento del sitio, mientras que otras nos ayudan a mejorar el sitio web y también la experiencia del usuario (cookies de rastreo). Puedes decidir por ti mismo si quieres permitir el uso de las cookies. Ten en cuenta que si las rechazas, puede que no puedas usar todas las funcionalidades del sitio web.