Physical Chemistry
Universitatis Chemia

Language Selector

Select your language

  • Español (España)

Login Form

  • Forgot your password?
  • Forgot your username?

General Chemistry

  • Fundamentals of chemistry
  • The atom, molecules and ions
  • The chemical compounds
  • The chemical reactions
  • Quantum Theory
  • Periodic properties
  • Chemical bonding I
  • Chemical bonding II
  • Thermochemistry
  • Acid-base equilibrium
  • Solubility equilibrium
  • Nuclear chemistry

Thermodynamics

  • Introduction to Thermodynamics
  • First Principle | Thermodynamics
  • Second Principle | Thermodynamics
  • Material equilibrium
  • Equilibrium in one-component systems
  • Normal thermodynamic reaction functions
  • Ideal solutions
  • Electrolyte solutions
  • Real solutions

Quantum Mechanic

  • Principles and postulates | Quantum Mechanics
  • The particle in a box | Quantum Mechanics
  • Harmonic oscillator | Quantum mechanics
  • Angular momentum | Quantum mechanics
  • Hydrogenoid atom | Quantum mechanics
  • Helioid atoms | Quantum Mechanics
  • Polyelectronic atoms : Quantum mechanics

Spectroscopy

  • Introduction to spectroscopy
  • Rotation vibration in diatomic
  • Rotational and vibrational spectra in diatomics

Pysical Chemistry

  • Chemical kinetics
  • Statistical thermodynamics
  • Kinetic theory of gases
  • Problems | Kinetic theory of gases
  • Transport phenomena

¿Cuántos somos?

We have 405 guests and no members online

  1. You are here:  
  2. Home
  3. Statistical thermodynamics

Statistical thermodynamics

Statistical thermodynamics

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 04 July 2011
Hits: 111

Statistical mechanics is the part of physical chemistry that allows the prediction of thermodynamic properties from the data provided by quantum mechanics. Thus, from microscopic properties of matter (quantum) macroscopic properties such as entropy, heat capacities, internal energy, surface tension, viscosity,... can be obtained.

Statistical thermodynamics assumes that matter is made up of a large number of microscopic components that individually obey quantum mechanics, but collectively obey statistical laws. Statistical thermodynamics establishes a connection between the microscopic description and the macroscopic description of nature.

 

Based on the results at the molecular level that are obtained with quantum mechanics, statistical thermodynamics calculates directly observable properties.

 

Macrostate and microstate

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 04 July 2011
Hits: 109

The particles meet three conditions:

  • They are distinguishable from each other (this fact affects entropy)
  • They obey the laws of quantum mechanics.
  • Furthermore, they do not interact with each other.
Our study objective will be an isolated thermodynamic system, formed by N particles with energy E=cte and volume V=cte.
Suppose that each molecule can be in a set of quantum states with energies . Calling to the number of particles that are in the quantum state with energy , the total energy of the system will be:
 

MACROSTATE

Statistical mechanics is the link between the microscopic world studied by quantum mechanics, and the macroscopic world studied by classical thermodynamics.

Read more: Macrostate and microstate

Calculation of the number of microstates of a distribution

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 20 November 2011
Hits: 118

Let us now calculate the number of microstates associated with any distribution. Let N distinguishable particles be distributed in \(r\) quantum states, as follows: \(N_{1}\) particles in \(\epsilon_{1}\), \(N_{2}\) in \(\epsilon_2 \),........,\(N_r\) in \(\epsilon_r\). The number of microstates of this macrostate is given by the equation:.

Probability of a distribution

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 20 November 2011
Hits: 109

The probability that a system is in a certain distribution will be the greater the greater the number of microstates associated with the distribution. Let \(W_i\) be the number of microstates associated with a certain distribution \(i\), the probability that the system is found in said distribution will be:

Most probable distribution: Boltzmann distribution law

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 21 November 2011
Hits: 111

We are going to calculate from among all the possible macrostates of the system the one that has the largest number of microstates. Thus, the calculation of any thermodynamic quantity is carried out neglecting all the macrostates except the most probable. Mathematically we must calculate $N_{1},N_{2},.....,N_{r}$ so that W takes the maximum value. Where W is given by:

\begin{equation} W=N!\prod_{k}\frac{g_{k}^{N_{k}}}{N_{k}!} \label{ec3} \end{equation}

Taking neperians at (\ref{ec3})

\begin{equation} lnW=lnN!+\sum\left(N_{k}lng_{k}-lnN_{k}!\right) \label{ec4} \end{equation}

Applying in (~\ref{ec4}) the Stirling approximation $lnN!=NlnN-N$:

\begin{equation} lnW=NlnN-N+\sum_{k}N_{k}lng_{k} -\sum_{k}\left(N_{k}lnN_{k}-N_{k}\right) \label{ec5} \end{equation}

Since $\sum_{k}N_{k}=N$ , the equation (\ref{ec5}) can be simplified to

\begin{equation} lnW=NlnN+\sum_{k}N_{k}lng_{k}-\sum_{k}N_{k}lnN_{k} \label{ ec6} \end{equation}

Read more: Most probable distribution: Boltzmann distribution law

Beta calculation

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 06 October 2012
Hits: 110

Boltzmann postulated the existence of a relationship between the total entropy of a thermodynamic system and the total number of microstates $(\Omega)$ in which the system can be found.

\begin{equation} S=kln\Omega \label{ec17} \end{equation}

Since $\Omega=\sum_{j}W_{j}\approx{W_{max}}$, where $W_{max} $ represents the most probable macrostate, which for simplicity we will represent by $W$. Thus, the Boltzmann Postulate leaves us with:

\begin{equation} S=klnW \label{ec18} \end{equation}

where $k$ is the Boltzmann constant $k=1.38\cdot10^{-27}J /K$ and $W$ is the macrostate with the largest number of microstates.

Read more: Beta calculation

Internal Energy Assessment

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 06 October 2012
Hits: 110

\begin{equation} E=\sum_{i}N_{i}\epsilon_{i}=\sum_{i}\frac{N}{q}g_{i}e^{-\beta{\epsilon_{i }}}\epsilon_{i}=\frac{N}{q}\sum_{i}g_{i}\epsilon_{i}e^{-{\epsilon_{i}}/kT} \label{ec31} \end{equation} Differentiating $q=\sum_{i}g_{i}e^{-\epsilon_{i}/kT}$ with respect to $T$ to volume: \begin{equation} \left(\frac{ \partial{q}}{\partial{T}}\right)_{V}=\frac{1}{kT^2}\sum_{i}g_{i}\epsilon_{i}e^{-\ epsilon_{i}/kT} \label{ec32} \end{equation} Solving the sum of the equation (~\ref{ec32}): \begin{equation} kT^{2}\left(\frac{\partial {q}}{\partial{T}}\right)_{V}=\sum_{i}g_{i}\epsilon_{i}e^{-\epsilon_{i}/kT} \label{ec33} \end{equation} Substituting (~\ref{ec33}) into (~\ref{ec31}) \begin{equation} E=NkT^{2}\left(\frac{\partial{lnq}}{\partial {T}}\right)_{V} \label{ec34} \end{equation}

Evaluation of A (Helmholtz free energy)

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 06 October 2012
Hits: 111

We start from the thermodynamic expression for the Helmholtz free energy: \begin{equation} A=E-TS \label{ec35} \end{equation} Substituting $S$ for its value: \begin{equation} A=ET\left (\frac{E}{T}+Nklnq\right)=-NkTlnq \label{ec36} \end{equation} Thus, the Helmholtz equation in statistical mechanics is left: \begin{equation} A=-NkTlnq \label {ec37} \end{equation}

Pressure Evaluation in Statistical Mechanics

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 06 October 2012
Hits: 114

Since $dA=-SdT-PdV$ to $T=cte$ gives us $P=-\left(\frac{\partial{A}}{\partial{V}}\right)_{T=cte}$

Differentiating the equation $A=-NkTlnq$ with respect to volume and substituting into P gives:

\begin{equation}P=NkT\left(\frac{\partial{lnq}}{\partial{V}}\right)_T=cte}\label{ec38}\end{equation}

Factorization of the partition function

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 07 October 2012
Hits: 133

Let us now consider the molecular partition function $q=\sum_{i}g_{i}e^{-\beta{\epsilon_{i}}}$. Molecular energy is the sum of translational, rotational, vibrational, and electronic energy.

\begin{equation} \epsilon_{i}=\epsilon_{tr,n}+\epsilon_{vib,v}+\epsilon_{rot,J}+\epsilon_{ele,u} \label{ec39} \end{equation}

Substituting into the molecular partition function $q$

\begin{equation} q={\sum{g_{i}}{e^{-\beta\left(\epsilon_{tr,n}+\epsilon_{vib ,v}+\epsilon_{rot,J}+\epsilon_{ele,u}\right)}}=\sum_{n}g_{n}e^{-\beta{\epsilon_{tr,n}}} \sum_{v}g_{v}e^{-\beta{\epsilon_{vib,v}}}\sum_{J}g_{J}e^{-\beta{\epsilon_{rot,J}}} \sum_{u}g_{u}e^{-\beta{\epsilon_{ele,u}}}} \label{ec40} \end{equation}

Read more: Factorization of the partition function

Translational partition function

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 07 October 2012
Hits: 137

The translational energy levels are given by the model of the particle in a three-dimensional box.

\begin{equation} \epsilon_{tr}=\frac{h^2}{8m}\left(\frac{n_{x}^{2}}{a^2}+\frac{n_{y}^ {2}}{a^2}+\frac{n_{z}^{2}}{a^2}\right) \end{equation} \begin{equation} q_{tr}=\sum e^{ \beta\epsilon_{tr}}=\sum e^{\frac{\beta h^2}{8m}\left(\frac{n_{x}^{2}}{a^2}+\frac{ n_{y}^{2}}{a^2}+\frac{n_{z}^{2}}{a^2}\right)}=\sum_{n_x =1}^{\infty}e ^{-\frac{\beta h^2n_{x}^{2}}{8ma^2}}\sum_{n_y =1}^{\infty}e^{-\frac{\beta h^2n_{ y}^{2}}{8mb^2}}\sum_{n_z =1}^{\infty}e^{-\frac{\beta h^2n_{z}^{2}}{8mc^2} } \end{equation}

Read more: Translational partition function

Ideal Gas Equation of State

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 07 October 2012
Hits: 132

The pressure of an ideal gas can be obtained from the translational partition function.

\begin{equation} P=NKT\left(\frac{\partial lnq_{tr}}{\partial V}\right)_T \end{equation}

We write the translational partition function:

\begin{equation} q_{tr }=\left(\frac{2\pi mkT}{h^2}\right)^{3/2}V \end{equation}

Taking natural logarithms

\begin{equation} lnq_{tr}=ln\left( \frac{2\pi mkT}{h^2}\right)^{3/2}+lnV \end{equation}

Read more: Ideal Gas Equation of State

Rotational partition function

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 07 October 2012
Hits: 122

The energy of the different rotational levels are given by the rigid rotor model: $\epsilon_{rot,J}=\frac{\hbar^2J(J+1)}{2I}$, the degeneracy of the levels is $ g_J=2J+1$

\begin{equation} q_{rot}=\sum_{J=0}^{\infty}g_Je^{\epsilon_{rot,J}/kT}=\sum_{J=0}^ {\infty}(2J+1)e^{-\frac{\hbar^2 J(J+1)}{2IkT}} \end{equation}

We call rotational temperature $\theta_{rot}$ a: $\ theta_{rot}=\frac{\hbar^2}{2Ik}$, has units of temperature (K) but is not temperature in the physical sense. Therefore:

\begin{equation} q_{rot}=\sum_{J=0}^{\infty}(2J+1)e^{-\frac{\theta_{rot}}{{T}}J( J+1)} \end{equation}

If $\frac{\theta_{rot}}{T}$ is small, the separation between rotational levels is small compared to $kT$ and we can approximate the sum by an integral.

\begin{equation} q_{rot}=\int_{0}^{\infty}(2J+1)e^{-\frac{\theta_{rot}}{T}J(J+1)}dJ \end{equation}

Read more: Rotational partition function

Vibrational partition function

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 07 October 2012
Hits: 143

The harmonic oscillator approximation gives $\epsilon_{vib}=\left(v+\frac{1}{2}\right)h\nu$ where $v$ is the vibrational quantum number ranging from $[0,\infty ]$ and there is no degeneracy.

It is usual in statistical mechanics to take the lowest energy level to be zero $\epsilon_{vib}=\left(v+\frac{1}{2}\right)h\nu-\frac{1}{2}h\ nu=vh\nu$

\begin{equation} q_{vib}=\sum_{v}e^{-\beta\epsilon_{vib,v}}=\sum_{v=0}^{\infty}e^{-\beta vh\ nu}=\sum_{0}^{\infty}e^{-\frac{h\nu}{kT}v}=\sum_{0}^{\infty}e^{-\frac{v\theta_ {vib}}{T}} \end{equation} Where $\theta_{vib}=\frac{h\nu}{k}$ called characteristic vibrational temperature.

Read more: Vibrational partition function

Electronic partition function

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 07 October 2012
Hits: 164

We calculate $q_{ele}$ as a sum extended to the electronic energy levels, so we will include the degeneracy $g_{ele}$ of each level. \begin{equation} q_{ele}=\sum_{i}g_{ele,i}e^{-\frac{\epsilon_{ele,i}}{k T}}=g_{ele,0}+g_ {ele,1}e^{-\frac{\epsilon_{ele,1}}{k T}}+g_{ele,2}e^{-\frac{\epsilon_{ele,2}}{k T }}+.... \end{equation} In this last equation we have taken the electronic energy of the fundamental level as zero

Internal energy of an ideal gas

Details
Written by: Germán Fernández
Category: statistical thermodynamics
Published: 07 October 2012
Hits: 144

\begin{equation} E=E_{tr}+E_{rot}+E_{vib}+E_{ele} \end{equation}

Calculation of internal translational energy

\begin{equation} E_{tr}=NkT^2 \left(\frac{\partial lnq_{tr}}{\partial T}\right)_{V} \end{equation}

\begin{equation} q_{tr}=\left(\frac{2\pi mkT }{h^2}\right)^{3/2}V \Rightarrow lnq_{tr}=\frac{3}{2}lnT+ln\left(\frac{2\pi mk}{h^2} \right)_V \end{equation}

Differentiating:

\begin{equation} \left(\frac{\partial q_{tr}}{\partial T}\right)_V=\frac{3}{2}\frac{ 1}{T} \end{equation}

\begin{equation} E_{tr}=NkT^2 \cdot \frac{3}{2T}=\frac{3}{2}NkT=\frac{3}{ 2}nRT \end{equation}

Read more: Internal energy of an ideal gas

  • Privacy Policy
  • Legal Notice
  • Cookies Policy