\begin{equation} E=E_{tr}+E_{rot}+E_{vib}+E_{ele} \end{equation}

Calculation of internal translational energy

\begin{equation} E_{tr}=NkT^2 \left(\frac{\partial lnq_{tr}}{\partial T}\right)_{V} \end{equation}

\begin{equation} q_{tr}=\left(\frac{2\pi mkT }{h^2}\right)^{3/2}V \Rightarrow lnq_{tr}=\frac{3}{2}lnT+ln\left(\frac{2\pi mk}{h^2} \right)_V \end{equation}

Differentiating:

\begin{equation} \left(\frac{\partial q_{tr}}{\partial T}\right)_V=\frac{3}{2}\frac{ 1}{T} \end{equation}

\begin{equation} E_{tr}=NkT^2 \cdot \frac{3}{2T}=\frac{3}{2}NkT=\frac{3}{ 2}nRT \end{equation}

Calculation of rotational internal energy

\begin{equation} E_{rot}=NkT^2\left(\frac{dlnq_{rot}}{dT}\right) \end{equation}

\begin{equation} q_{rot}=\frac{T}{\sigma\theta_{rot}} \Rightarrow lnq_{rot}=lnT-ln\sigma\theta_{rot} \end{equation}

Deriving: \begin{equation} \frac{dlnq_{rot}}{dT}=\frac{1}{T} \end{equation}

Substituting the derivative into the energy expression

\begin{equation} E_{rot}=NkT^2\ cdot \frac{1}{T}=NkT=nRT \end{equation}

Calculation of internal vibrational energy

\begin{equation} E_{vib}=NkT^2\left(\frac{dlnq_{vib}}{dT}\right) \end{equation}

\begin{equation} q_{ vib}=\frac{1}{1-e^{-\theta_{vib}/T}}\Rightarrow lnq_{vib}=-ln(1-e^{-\theta_{vib}/T}) \end{equation}

Deriving:

\begin{equation} \frac{dlnq_{vib}}{dT}=\frac{\theta_{vib}/T^2 e^{-\theta_{vib}/T}}{1 -e^{-\theta_{vib}/T}}=\frac{\theta_{vib}/T^2}{e^{\theta_{vib}/T}-1} \end{equation}

Substituting this derivative in the energy equation

\begin{equation} E_{vib}=nR\theta_{vib}\frac{1}{e^{\theta_{vib}/T}-1} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.