\begin{equation} E=E_{tr}+E_{rot}+E_{vib}+E_{ele} \end{equation}

Calculation of internal translational energy

\begin{equation} E_{tr}=NkT^2 \left(\frac{\partial lnq_{tr}}{\partial T}\right)_{V} \end{equation}

\begin{equation} q_{tr}=\left(\frac{2\pi mkT }{h^2}\right)^{3/2}V \Rightarrow lnq_{tr}=\frac{3}{2}lnT+ln\left(\frac{2\pi mk}{h^2} \right)_V \end{equation}

Differentiating:

\begin{equation} \left(\frac{\partial q_{tr}}{\partial T}\right)_V=\frac{3}{2}\frac{ 1}{T} \end{equation}

\begin{equation} E_{tr}=NkT^2 \cdot \frac{3}{2T}=\frac{3}{2}NkT=\frac{3}{ 2}nRT \end{equation}

Calculation of rotational internal energy

\begin{equation} E_{rot}=NkT^2\left(\frac{dlnq_{rot}}{dT}\right) \end{equation}

\begin{equation} q_{rot}=\frac{T}{\sigma\theta_{rot}} \Rightarrow lnq_{rot}=lnT-ln\sigma\theta_{rot} \end{equation}

Deriving: \begin{equation} \frac{dlnq_{rot}}{dT}=\frac{1}{T} \end{equation}

Substituting the derivative into the energy expression

\begin{equation} E_{rot}=NkT^2\ cdot \frac{1}{T}=NkT=nRT \end{equation}

Calculation of internal vibrational energy

\begin{equation} E_{vib}=NkT^2\left(\frac{dlnq_{vib}}{dT}\right) \end{equation}

\begin{equation} q_{ vib}=\frac{1}{1-e^{-\theta_{vib}/T}}\Rightarrow lnq_{vib}=-ln(1-e^{-\theta_{vib}/T}) \end{equation}

Deriving:

\begin{equation} \frac{dlnq_{vib}}{dT}=\frac{\theta_{vib}/T^2 e^{-\theta_{vib}/T}}{1 -e^{-\theta_{vib}/T}}=\frac{\theta_{vib}/T^2}{e^{\theta_{vib}/T}-1} \end{equation}

Substituting this derivative in the energy equation

\begin{equation} E_{vib}=nR\theta_{vib}\frac{1}{e^{\theta_{vib}/T}-1} \end{equation}