Physical Chemistry
Universitatis Chemia

Select your language

  • Arabic (اللغة العربية)
  • Deutsch (Deutschland)
  • Français (France)
  • Español (España)

Login Form

  • Forgot your password?
  • Forgot your username?

General Chemistry

  • Fundamentals of chemistry
  • The atom, molecules and ions
  • The chemical compounds
  • The chemical reactions
  • Quantum Theory
  • Periodic properties
  • Chemical bonding I
  • Chemical bonding II
  • Thermochemistry
  • Acid-base equilibrium
  • Solubility equilibrium
  • Nuclear chemistry

Thermodynamics

  • Introduction to Thermodynamics
  • First Principle | Thermodynamics
  • Second Principle | Thermodynamics
  • Material equilibrium
  • Equilibrium in one-component systems
  • Normal thermodynamic reaction functions
  • Ideal solutions
  • Electrolyte solutions
  • Real solutions

Quantum Mechanic

  • Principles and postulates | Quantum Mechanics
  • The particle in a box | Quantum Mechanics
  • Harmonic oscillator | Quantum mechanics
  • Angular momentum | Quantum mechanics
  • Hydrogenoid atom | Quantum mechanics
  • Helioid atoms | Quantum Mechanics
  • Polyelectronic atoms : Quantum mechanics

Spectroscopy

  • Introduction to spectroscopy
  • Rotation vibration in diatomic
  • Rotational and vibrational spectra in diatomics

Pysical Chemistry

  • Chemical kinetics
  • Statistical thermodynamics
  • Kinetic theory of gases
  • Problems | Kinetic theory of gases
  • Transport phenomena

We have 190 guests and no members online

  1. You are here:  
  2. Home
  3. Problems | Kinetic theory of gases

Problems | Kinetic theory of gases

Problem 1. Number of molecules with speed between $v_1$ and $v_2$

Details
Written by: Germán Fernández
Category: Problems | Gas kinetic theory
Published: 23 May 2018
Hits: 149

For 1 mole of oxygen at 300K and 1 atm calculate:

a) The number of molecules whose speeds are between 500,000 and 500,001 m/s (since this speed interval is small, the distribution function practically does not vary, and we can consider it infinitesimal).

b) The number of molecules with $v_z$ between 150000 and 150001 m/s.

c) The number of molecules that simultaneously have $v_z$ and $v_x$ between 150,000 and 150,001 m/s.

Solution:

a) \begin{equation} \frac{dN_v}{N}=G(v)dv \;\rightarrow N_v=NG(v) \Delta v \end{equation} \begin{equation} G(v)=\ left(\frac{m}{2\pi kT}\right)^{3/2}e^{\frac{-mv^2}{2kT}}4\pi v^2 \end{equation}

Substituting, $v=500\;m/s$; $k=1.38x10^{-23}J/s$; $T=300K$; $m=\frac{0.032}{6x10^{23}}=5.33x10^{-26}\;kg$, we obtain: $G(v)=1.85x10^{-3}\;s/m$

Therefore, $N_v=6x10^{23}\cdot (1.85x10^{-3}\;s/m)\cdot (0.001\;m/s)=1.1x10^{18}\;molecules$

b) \begin{equation} \frac{dN_{vz}}{N}=G(v_z)dv_z \;\rightarrow N_{vz}=NG(v_z) \Delta v_z=7.75x10^{17}\;molecules \end{equation} \begin{equation} g(v_z)=\left(\frac{m}{2\pi kT}\right)^{1/2}e^{\frac{-mv_{z}^ {2}}{2kT}} \end{equation} It is solved analogously to part a)

c) \begin{equation} N_{v_xv_yv_z}=Ng(v_x)g(v_z) \Delta v_x \Delta v_z =9.22x10^{11}\;molecules \end{equation}

Problem 2. Represent the distribution function for the x component of velocity

Details
Written by: Germán Fernández
Category: Problems | Gas kinetic theory
Published: 23 May 2018
Hits: 172

Calculate the probability density for the x component of the velocity of a sample of oxygen molecules at 300K in the interval $0<|v_x|<1000$m/s. Represent the resulting function.

Solution:

\begin{equation} g(v_x)=(1.04289x10^{-3}s/m)e^{(-6.4145x10^{-6}m^{-2}s^2)v_{x}^{ 2}} \end{equation}

  • Privacy Policy
  • Legal Notice
  • Cookies Policy