Physical Chemistry
Universitatis Chemia

Select your language

  • Arabic (اللغة العربية)
  • Deutsch (Deutschland)
  • Français (France)
  • Español (España)

Login Form

  • Forgot your password?
  • Forgot your username?

General Chemistry

  • Fundamentals of chemistry
  • The atom, molecules and ions
  • The chemical compounds
  • The chemical reactions
  • Quantum Theory
  • Periodic properties
  • Chemical bonding I
  • Chemical bonding II
  • Thermochemistry
  • Acid-base equilibrium
  • Solubility equilibrium
  • Nuclear chemistry

Thermodynamics

  • Introduction to Thermodynamics
  • First Principle | Thermodynamics
  • Second Principle | Thermodynamics
  • Material equilibrium
  • Equilibrium in one-component systems
  • Normal thermodynamic reaction functions
  • Ideal solutions
  • Electrolyte solutions
  • Real solutions

Quantum Mechanic

  • Principles and postulates | Quantum Mechanics
  • The particle in a box | Quantum Mechanics
  • Harmonic oscillator | Quantum mechanics
  • Angular momentum | Quantum mechanics
  • Hydrogenoid atom | Quantum mechanics
  • Helioid atoms | Quantum Mechanics
  • Polyelectronic atoms : Quantum mechanics

Spectroscopy

  • Introduction to spectroscopy
  • Rotation vibration in diatomic
  • Rotational and vibrational spectra in diatomics

Pysical Chemistry

  • Chemical kinetics
  • Statistical thermodynamics
  • Kinetic theory of gases
  • Problems | Kinetic theory of gases
  • Transport phenomena

We have 108 guests and no members online

  1. You are here:  
  2. Home
  3. Hydrogenoid atom | Quantum mechanics

Hydrogenoid atom | Quantum mechanics

Hydrogen atom

Details
Written by: Germán Fernández
Category: Hydrogenoid atom | Quantum mechanics
Published: 07 October 2012
Hits: 665

Atoms that only have one electron are called hydrogenoids. They are hydrogenoids atoms: H, He + , Li 2+ , Be 3+ .

Hydrogen atoms present a factorable wave function in a radial part and a spherical harmonic, which has the form:

$\Psi(r,\theta,\varphi)=R_{n,l}(r)Y_{l,m}(\theta,\varphi)$

where n,l,m are the quantum numbers that make the wave function acceptable.

The energy of a hydrogen atom is given by the expression:

$E_n=\frac{RhZ^2}{n^2}$

As can be seen, the energy depends exclusively on the principal quantum number, n.

The Radial Schrödinger Equation

Details
Written by: Germán Fernández
Category: Hydrogenoid atom | Quantum mechanics
Published: 07 October 2012
Hits: 681

A central force is one that comes from a potential energy function with spherical symmetry, that is, a function that only depends on the distance to the origin of the particle: $V=V(r)$ Thus: $\left(\frac{ \partial V}{\partial\theta}\right)_{r,\varphi}=0 ;$ and $\left(\frac{\partial V}{\partial\varphi}\right)_{r,\ theta}=0 ;$

Let us now consider the quantum mechanics of a simple particle subjected to a central force:

\begin{equation} \hat{H}=\hat{T}+\hat{V}=-\frac{\hbar^2}{2m}\nabla^2+V(r) \end{equation}

Let's express $\nabla^2$ in spherical polar coordinates:

\begin{equation} \nabla^2=\frac{\partial^2 }{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}+\frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}+\frac{1}{r^2}\cot\theta\frac{\partial}{\partial\theta}+\frac{1}{r^2 sin^2\theta}\frac {\partial^2}{\partial\varphi^2} \end{equation}

Remembering the expression of the operator $\hat{l}^2$:

\begin{equation}\label{ec3} \hat{l}^ 2=-\hbar^2\left(\frac{\partial^2}{\partial\theta^2}+\cot\theta\frac{\partial}{\partial\theta}+\frac{1}{sin^2\theta}\frac{\partial^2}{\partial\varphi^2}\right) \end{equation}

Read more: The Radial Schrödinger Equation

Two Particle Rigid Rotor

Details
Written by: Germán Fernández
Category: Hydrogenoid atom | Quantum mechanics
Published: 07 October 2012
Hits: 683

It is a system of two particles separated by a distance d with no possibility of vibration $r=d$. The energy of the rotor is kinetic, therefore $V=0$. We are only interested in rotational energy.

Since r is constant, we can omit the factor $R(r)$ in the wave function, which will be given by a spherical harmonic. \begin{equation} \Psi =Y_{l,m}(\theta,\varphi) \end{equation} We set up the Schrödinger equation: \begin{equation} \left[-\frac{\hbar^2}{ 2\mu}\left(\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}\right)+\frac{1 }{2\mu d^2}\hat{l}^2+V(r)\right]Y_{l,m}(\theta,\varphi)=EY_{l,m}(\theta,\varphi ) \end{equation} The derivatives with respect to $r$ are null, since the function does not depend on this variable.

Read more: Two Particle Rigid Rotor

The Hydrogen Atom

Details
Written by: Germán Fernández
Category: Hydrogenoid atom | Quantum mechanics
Published: 07 October 2012
Hits: 683

We set up the Schrödinger equation: \begin{equation}\label{ec1} \left[-\frac{\hbar^2}{2\mu}\nabla^2-\frac{Ze^2}{r}\right ]\Psi=E\Psi \end{equation} Where $\Psi=R_{n,l}(r)Y_{l,m}(\theta,\varphi)$

Substituting the wave function into the Schödinger equation \begin{equation} -\frac{\hbar^2}{2\mu}\left(R''+\frac{2}{r}R'\right)+ \frac{l(l+1)\hbar^2}{2\mu r^2}R-\frac{Ze^2}{r}R=ER \label{ec2} \end{equation}

We simplify by multiplying all the terms of the equation (\ref{ec2}) by $-\frac{2\mu}{\hbar^2}$

\begin{equation} R''+\frac{2}{r}R'+\frac{2\mu ER}{\hbar^2}+\frac{2\mu Ze^2}{r\hbar^2}R-\frac{l(l+1)}{r^2}R= 0  \end{equation}

Putting $a=\frac{\hbar^2}{\mu e^2}$ into the equation (8) gives:

\begin{equation}\label{ec4} R''+\frac{2}{r}R'+\left[\frac{2E}{ae^2}+\frac{2Z}{ra}-\frac{l(l+1 )}{r^2}\right]R=0 \end{equation}

We solve the equation (\ref{ec4}) in two cases:

Read more: The Hydrogen Atom

  • Privacy Policy
  • Legal Notice
  • Cookies Policy