A central force is one that comes from a potential energy function with spherical symmetry, that is, a function that only depends on the distance to the origin of the particle: $V=V(r)$ Thus: $\left(\frac{ \partial V}{\partial\theta}\right)_{r,\varphi}=0 ;$ and $\left(\frac{\partial V}{\partial\varphi}\right)_{r,\ theta}=0 ;$

Let us now consider the quantum mechanics of a simple particle subjected to a central force:

\begin{equation} \hat{H}=\hat{T}+\hat{V}=-\frac{\hbar^2}{2m}\nabla^2+V(r) \end{equation}

Let's express $\nabla^2$ in spherical polar coordinates:

\begin{equation} \nabla^2=\frac{\partial^2 }{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}+\frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}+\frac{1}{r^2}\cot\theta\frac{\partial}{\partial\theta}+\frac{1}{r^2 sin^2\theta}\frac {\partial^2}{\partial\varphi^2} \end{equation}

Remembering the expression of the operator $\hat{l}^2$:

\begin{equation}\label{ec3} \hat{l}^ 2=-\hbar^2\left(\frac{\partial^2}{\partial\theta^2}+\cot\theta\frac{\partial}{\partial\theta}+\frac{1}{sin^2\theta}\frac{\partial^2}{\partial\varphi^2}\right) \end{equation}

Substituting equation (3 ) in (2) we get:

\begin{equation}\label{ec4} \nabla^2=\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac {\partial}{\partial r}-\frac{1}{\hbar^2 r^2}\hat{l}^2 \end{equation}

Taking equation (4) to (1) the Hamiltonian for a one-particle system becomes:

\begin{equation}\label{ec5} \hat{H}=-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}\right)+\frac{1}{2mr^2}\hat{l}^2+V(r ) \end{equation}

In quantum mechanics, we ask if the existence of states with definite values for energy and angular momentum is possible. For the set of eigenfunctions of $\hat{H}$ to be eigenfunctions of $\hat{l}^2$, the commutator $[\hat{H},\hat{l}^2]$ must be canceled :

\begin{equation} [\hat{H},\hat{l}^2]=[\hat{T}+\hat{V},\hat{l}^2]=[\hat{T} ,\hat{l}^2]+\underbrace{[\hat{V},\hat{l}^2]}_{0} \end{equation}

The commutator $[\hat{V},\hat {l}^2]$ is zero since the operators $\hat{l}(\theta,\varphi)$ and $V(r)$ do not have common variables.

\begin{equation} [\hat{T},\hat{l}^2]=\left[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}\right)+\frac{1}{2mr^2}\hat{l}^2,\hat{l }^2\right] \end{equation}

Applying commutator properties:

\begin{equation} [\hat{T},\hat{l}^2]=-\frac{\hbar^2}{2m}\left[\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r},\hat{l}^2\right]+\frac{1}{2m}\left[\frac{1}{r^2}\hat{l}^2,\hat{l}^2\right]=0 \end{equation}

Similarly, it can be prove that: $[\hat{H},\hat{l}_z]=0$ and $[\hat{l}^2,\hat{l}_z]$.

This means that we can have a set of simultaneous eigenfunctions of $\hat{H},\hat{l}^2,\hat{l}_z$ for the central forces problem.

If we denote by $\psi$ the common eigenfunctions

\begin{eqnarray} \hat{H}\Psi & = & E\Psi\\ \hat{l}^2 \Psi & = & \hbar^2l(l+ 1)\Psi\;\;l=0,1,2...\\ \hat{l}_z \Psi & = & m\hbar\Psi\;\;m=-l,...,0 ....+l \end{eqnarray}

The Schrödinger equation can be written:

\begin{equation} \left[-\frac{\hbar^2}{2m}\left(\frac{\partial^2} {\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}\right)+\frac{1}{2mr^2}\hat{l}^2+V (r)\right]\Psi=E\Psi \end{equation}

The wave function can be written as the product of a radial part $R(r)$ and a spherical harmonic $Y_{l,m}(\theta ,\varphi)$. This separation of variables is possible because the potential has spherical symmetry (only dependent on r).

\begin{equation} \Psi = R(r)Y_{l,m}(\theta,\varphi) \end{equation} Substituting into the Schrödinger equation \begin{equation} \left[-\frac{\hbar ^2}{2m}\left(\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}\right)+\frac {1}{2mr^2}\hat{l}^2+V(r)\right]R(r)Y_{l,m}(\theta,\varphi)=ER(r)Y_{l,m }(\theta,\varphi) \end{equation}

\begin{equation} -\frac{\hbar^2}{2m}\left(\frac{\partial^2 R(r)}{\partial r^ 2}+\frac{2}{r}\frac{\partial R(r)}{\partial r}\right)Y_{l,m}(\theta,\varphi)+\frac{l(l+ 1)\hbar^2}{2mr^2}R(r)Y_{l,m}(\theta,\varphi)+\\+V(r)R(r)Y_{l,m}(\theta ,\varphi)=ER(r)Y_{l,m}(\theta,\varphi) \end{equation}

Dividing by $Y_{lm}(\theta,\varphi)$

\begin{equation} -\frac {\hbar^2}{2m}\left(\frac{\partial^2 R(r)}{\partial r^2}+\frac{2}{r}\frac{\partial R(r)} {\partial r}\right)+\frac{l(l+1)\hbar^2}{2mr^2}R(r)+V(r)R(r)=ER(r) \end{equation}

In this last equation, called the radial Schrödinger equation, it is observed that for any problem of a particle, with a function potential energy of spherical symmetry V(r), the eigenfunction $\Psi$ is the product of a radial factor and a spherical harmonic.

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.