Boltzmann postulated the existence of a relationship between the total entropy of a thermodynamic system and the total number of microstates $(\Omega)$ in which the system can be found.

\begin{equation} S=kln\Omega \label{ec17} \end{equation}

Since $\Omega=\sum_{j}W_{j}\approx{W_{max}}$, where $W_{max} $ represents the most probable macrostate, which for simplicity we will represent by $W$. Thus, the Boltzmann Postulate leaves us with:

\begin{equation} S=klnW \label{ec18} \end{equation}

where $k$ is the Boltzmann constant $k=1.38\cdot10^{-27}J /K$ and $W$ is the macrostate with the largest number of microstates.

For a system with degeneracy, the number of microstates of the most probable macrostate is given by:

\begin{equation} lnW=NlnN+\sum_{i}N_{ i}lng_{i}-\sum_{i}N_{i}lnN_{i} \label{ec19} \end{equation}

Substituting (~\ref{ec19})into (~\ref{ec18})

\begin{equation} S=kNlnN+k\sum_{i}N_{i}lng_{i}-k\sum_{i}N_{i}lnN_{i} \label{ec20} \end{equation}

Taking natural logarithms in Boltzmann's Law (~\ref{ec16})

\begin{equation} lnN_{i}=lnN-lnq+lng_{i}-\beta\epsilon_{i} \label{ec21} \end{equation}

Substituting into (~\ref{ec20})

\begin{equation} S=kNlnN+k\sum_{i}N_{i}lng_{i}-k\sum_{i}\left(N_{i}lnN-N_{i }lnq+N_{i}lng_{i}-N_{i}\beta\epsilon_{i}\right) \label{ec22} \end{equation}

Splitting the sum:

\begin{equation} S=kNlnN+k \sum_{i}N_{i}lng_{i}-kNlnN+kNlnq+k\sum_{i}N_{i}lng_{i}+k\ beta\sum_{i}N_{i}\epsilon_{i} \label{ec23} \end{equation}

Simplifying gives an equation for entropy

\begin{equation} S=kNlnq+k\beta{E} \label {ec24} \end{equation}

Differentiating S:

\begin{equation} dS=kN\frac{dq}{q}+kEd\beta+k\beta{dE} \label{ec25} \end{equation}

As $ q=\sum_{i}e^{-\beta{\epsilon_{i}}}$ deriving:

\begin{equation} dq=\sum_{i}{-\beta{e^{-\beta{\epsilon_ {i}}}d\epsilon_{i}}}-\sum_{i}\epsilon_{i}e^{-\beta{\epsilon_{i}}}d\beta \label{ec26} \end{equation}

Substituting (~\ref{ec26}) into (~\ref{ec25}):

\begin{equation} dS=-kN\frac{\beta\sum_{i}{e^{-\beta{\epsilon_{ i}}}{d\epsilon_{i}}}}{q}-kN\frac{d\beta\sum_{i}\epsilon_{i}e^{-\beta{\epsilon_{i}}}} {q}+kEd\beta+k\beta\sum_{i}\epsilon_{i}dN_{i}+k\beta\sum_{i}N_{i}d\epsilon_{i} \label{ec27} \end{equation}

In the equation (~\ref{ec27}) the first and last terms are equal, as are the second and third terms. Simplifying:

\begin{equation} dS=k\beta\sum_{i}\epsilon_{i}dN_{i} \label{ec28} \end{equation}

From the point of view of classical thermodynamics $dE=TdS- PdV$. In statistical mechanics $dE=\sum_{i}\epsilon_{i}dN_{i}+\sum_{i}N_{i}d\epsilon_{i}$. Equating the first terms of both equations:

\begin{equation} TdS=\sum_{i}\epsilon_{i}dN_{i} \label{ec29} \end{equation}

Comparing the equation (~\ref{ec28}) and (~\ref{ec29}), it follows that $k\beta=\frac{1}{T}$, solving for $\beta$

\begin{equation} \beta=\frac{1}{kT} \label{ec30} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.