Let us now consider the molecular partition function $q=\sum_{i}g_{i}e^{-\beta{\epsilon_{i}}}$. Molecular energy is the sum of translational, rotational, vibrational, and electronic energy.

\begin{equation} \epsilon_{i}=\epsilon_{tr,n}+\epsilon_{vib,v}+\epsilon_{rot,J}+\epsilon_{ele,u} \label{ec39} \end{equation}

Substituting into the molecular partition function $q$

\begin{equation} q={\sum{g_{i}}{e^{-\beta\left(\epsilon_{tr,n}+\epsilon_{vib ,v}+\epsilon_{rot,J}+\epsilon_{ele,u}\right)}}=\sum_{n}g_{n}e^{-\beta{\epsilon_{tr,n}}} \sum_{v}g_{v}e^{-\beta{\epsilon_{vib,v}}}\sum_{J}g_{J}e^{-\beta{\epsilon_{rot,J}}} \sum_{u}g_{u}e^{-\beta{\epsilon_{ele,u}}}} \label{ec40} \end{equation}

\begin{equation} q=q_{tr}\cdot{ q_{vib}}\cdot{q_{rot}}\cdot{q_{ele}} \label{ec41} \end{equation}

Taking neperians in (\ref{ec41})

\begin{equation} lnq=lnq_{ tr}+lnq_{vib}+lnq_{rot}+lnq_{ele} \label{ec42} \end{equation}

The total internal energy of a gas can be expressed in terms of translational, rotational, vibrational, and electronic partition functions.

\begin{equation} E=NkT^2\left(\frac{\partial{lnq}}{\partial{T}}\right)_{V} \label{ec43} \end{equation}

Substituting (\ref {ec42})en (~\ref{ec43})

\begin{equation} E=NkT^2\left[\left(\frac{\partial{lnq_{tr}}}{\partial{T}}\right )_{V}+\frac{dlnq_{vib}}{dT}+\frac{dlnq_{rot}}{dT}+\frac{dlnq_{ele}}{dT}\right] \label{ec44} \end{equation}

where $E_{tr}=NkT^2\left(\frac{\partial{lnq_{tr}}}{\partial{T}}\right)_{V}$ $E_{vib}= NkT^2\frac{dlnq_{vib}}{dT},.........$

\begin{equation} E=E_{tr}+E_{vib}+E_{rot}+E_{ele } \label{ec45} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.