The translational energy levels are given by the model of the particle in a three-dimensional box.

\begin{equation} \epsilon_{tr}=\frac{h^2}{8m}\left(\frac{n_{x}^{2}}{a^2}+\frac{n_{y}^ {2}}{a^2}+\frac{n_{z}^{2}}{a^2}\right) \end{equation} \begin{equation} q_{tr}=\sum e^{ \beta\epsilon_{tr}}=\sum e^{\frac{\beta h^2}{8m}\left(\frac{n_{x}^{2}}{a^2}+\frac{ n_{y}^{2}}{a^2}+\frac{n_{z}^{2}}{a^2}\right)}=\sum_{n_x =1}^{\infty}e ^{-\frac{\beta h^2n_{x}^{2}}{8ma^2}}\sum_{n_y =1}^{\infty}e^{-\frac{\beta h^2n_{ y}^{2}}{8mb^2}}\sum_{n_z =1}^{\infty}e^{-\frac{\beta h^2n_{z}^{2}}{8mc^2} } \end{equation}

Substituting the summations for integrals:

\begin{equation} q_{tr}=\int_{0}^{\infty}e^{-\frac{\beta h^2n_{x}^{2 }}{8ma^2}}dn_x \int_{0}^{\infty}e^{-\frac{\beta h^2n_{y}^{2}}{8mb^2}}dn_y\int_{0 }^{\infty}e^{-\frac{\beta h^2n_{z}^{2}}{8mc^2}}dn_z \end{equation}

Using the integral: $\int_{0}^{ \infty}e^{-\alpha x^2}dx=\frac{1}{2}\left(\frac{\pi}{\alpha}\right)^{1/2}$

\begin{equation} q_{tr}=\frac{1}{2}\left(\frac{8m\pi}{\beta h^2}\right)^{1/2}a \cdot \frac{1}{2 }\left(\frac{8m\pi}{\beta h^2}\right)^{1/2}b \cdot \frac{1}{2}\left(\frac{8m\pi}{\beta h^2}\right)^{1/2}c \end{equation}

Given that $\beta = \frac{1}{k_BT}$ and $V=abc$, the translational partition function is left:

\begin{equation} q_{tr}=\left(\frac{2\pi mkT}{h^2} \right)^{3/2}V \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.