The energy of the different rotational levels are given by the rigid rotor model: $\epsilon_{rot,J}=\frac{\hbar^2J(J+1)}{2I}$, the degeneracy of the levels is $ g_J=2J+1$

\begin{equation} q_{rot}=\sum_{J=0}^{\infty}g_Je^{\epsilon_{rot,J}/kT}=\sum_{J=0}^ {\infty}(2J+1)e^{-\frac{\hbar^2 J(J+1)}{2IkT}} \end{equation}

We call rotational temperature $\theta_{rot}$ a: $\ theta_{rot}=\frac{\hbar^2}{2Ik}$, has units of temperature (K) but is not temperature in the physical sense. Therefore:

\begin{equation} q_{rot}=\sum_{J=0}^{\infty}(2J+1)e^{-\frac{\theta_{rot}}{{T}}J( J+1)} \end{equation}

If $\frac{\theta_{rot}}{T}$ is small, the separation between rotational levels is small compared to $kT$ and we can approximate the sum by an integral.

\begin{equation} q_{rot}=\int_{0}^{\infty}(2J+1)e^{-\frac{\theta_{rot}}{T}J(J+1)}dJ \end{equation}

Making the change of variable $w=J(J+1)\Rightarrow dw=(2J+1)dJ \Rightarrow dJ=\frac{dw}{2J+1}$

\begin{equation} q_{ rot}=\int_{0}^{\infty}e^{-\frac{\theta_{rot}}{T}w}dw=\left[-\frac{T}{\theta_{rot}}e ^{-\frac{\theta_{rot}}{T}w}\right]_{0}^{\infty}=\frac{T}{\theta_{rot}} \end{equation}

The function of Rotational partitioning must be modified by introducing the symmetry number $\sigma$ which takes the value 1 for homonuclear molecules and 2 for heteronuclear ones.

\begin{equation} q_{rot}=\frac{T}{\sigma\theta_{rot}} \end{equation}

For $T>\theta_{rot}$ the above equation makes a significant error and we must use the following development:

\begin{equation} q_{rot}=\frac{T}{\sigma\theta_{rot}}\left[1+\frac{1}{3}\frac{\theta_{rot}}{ T}+\frac{1}{15}\left(\frac{\theta_{rot}}{T}\right)^2+\frac{1}{315}\left(\frac{\theta_{rot }}{T}\right)^3+....\right] \end{equation}

For $T<\theta_{rot}$ the partition function must be evaluated by summation: $q_{rot}=\sum_{J=0}^{\infty}(2J+1)e^{-\frac{\theta_{rot}}{T}J(J+1)}$

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.