Los momentos angulares de spin y orbital se acoplan dando lugar a un momento angular total que respresentamos por J, $\vec{J}=\vec{L}+\vec{S}$. El número cuántico del momento angular total se obtiene por suma de los números cuánticos del momento angular orbital y spin totales: \begin{equation} J=L\otimes S= L+S, L+S-1, L+S-2,......,|L-S| \end{equation} Los operadores compatibles con el Halmiltoniano de estructura fina son, $J^2$ y $J_z$, cuyos valores propios son, $\hbar^2 J(J+1)$ y $M_J\hbar$, respectivamente. Un nivel de estructura fina viene dado por: $^{2S+1}L_J$ Los estados de estructura fina tienen la forma: $\left|^{2S+1}L_J\;M_J\right\rangle$. La degeneración de cada nivel de estructura fina es $2J+1$ El acoplamiento spin-orbita produce el desdoblamiento de los términos R-S en niveles de estructura fina, los cuales poseen una energía ligeramente diferente. Por ejemplo, el carbono en su estado fundamental $1s^22s^22p^2$, tiene tres términos R-S $^1S,^3P$ y $^1D$. Al considerar el acoplamiento spin-orbita se produce el desdoblamiento del término $^3P$ en tres niveles $^3P_2, ^3P_1$ y $^3P_0$.

We use cookies

Usamos cookies en nuestro sitio web. Algunas de ellas son esenciales para el funcionamiento del sitio, mientras que otras nos ayudan a mejorar el sitio web y también la experiencia del usuario (cookies de rastreo). Puedes decidir por ti mismo si quieres permitir el uso de las cookies. Ten en cuenta que si las rechazas, puede que no puedas usar todas las funcionalidades del sitio web.