The vibrational energy is obtained by solving the vibrational Schrödinger equation

\begin{equation}\label{6} \left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dR^2}+E_e(R)\right]\psi_{ vib}(R)=(E_{vib}+E_{ele})\psi_{vib}(R) \end{equation}

The Taylor series expansion of the potential energy $E_e(R)$ around the equilibrium distance $R_e$ gives us:

\begin{equation}\label{71} E_e(R)\approx E_e(R_e)+\frac{1}{2}\frac{d^2E_e(R_e)}{dR^2}(R-R_e)^ 2+..... \end{equation}

The quantity $E_e(R_e)=E_{el}$ is constant for a given electronic state and is called equilibrium electronic energy.

Substituting into the vibrational Schrödinger equation and grouping terms, we get:

\begin{equation}\label{8} \left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dR^2}+\cancel{E_e(R_e)}+\ frac{1}{2}\frac{d^2E_e(R_e)}{dR^2}x^2\right]\psi_{vib}=(E_{vib}+\cancel{E_{el}})\ psi_{vib} \end{equation}

Doing $x=R-R_e$ and $dx=dR$, we obtain:

\begin{equation}\label{9} \left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dx^2}+\frac{1}{2}\frac {d^2E_e(R_e)}{dx^2}x^2\right]\psi_{vib}=E_{vib}\psi_{vib} \end{equation}

Where, $k_e=\frac{d^2E_e(R_e)}{dx^2}$.

\begin{equation} \left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dx^2}+\frac{1}{2}kx^2\right]\ psi_{vib}=E_{vib}\psi_{vib} \end{equation}

This last equation has the form of the Schrödinger equation for a harmonic oscillator and its solution gives us:

\begin{equation}\label{91} E_{vib}=(v+\frac{1}{2})h\nu_e \end{equation}

Where $v=0,1,2,3....$ is the vibrational quantum number and $\nu_e$ is the equilibrium vibrational frequency.

\begin{equation}\label{10} \nu_e=\frac{1}{2\pi}\sqrt{\frac{k_e}{\mu}} \end{equation}

The oscillator force constant corresponds to the second derivative of $E_e$ with $R=R_e$.

\begin{equation}\label{11} k=\left(\frac{\partial^2E_e}{\partial R^2}\right)_{R=R_e} \end{equation}

The internal energy of the diatomic molecule is given by: $E_{int}=E_{rot}+E_{vib}+E_{ele}$

\begin{equation}\label{12} E_{int}=B_e h J(J+1)+(v+\frac{1}{2})h\nu_e+E_{ele} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.