Obtain the kinetic equation for the radical linear chain reaction, $H_2 + Br_2 \rightarrow 2HBr$, which occurs through the following mechanism: \begin{eqnarray} Br_2 + M & \stackrel{k_i}{\rightarrow} & 2Br + M\label{ec110}\\ Br + H_2 & \stackrel{k_{p1}}{\rightarrow} & HBr + H\label{ec111}\\ H + Br_2 & \stackrel{k_{p2}}{\rightarrow} & HBr + Br\label{ec112}\\ H + HBr & \stackrel{k_{r}}{\rightarrow} & H_2 + Br\label{ec113}\\ 2Br + M & \stackrel{k_{t}}{\rightarrow} & Br_2 + M\label{ec114} \end{eqnarray}

$(\ref{ec110})$ Initiation stage

$(\ref{ec111})$ and $(\ref{ec112})$ Stages of propagation

$(\ref{ec113})$ Delay stage

$(\ref{ec114})$ Termination stage

We define the rate of the reaction for HBr: $r=\frac{1}{2}\frac{d[HBr]}{dt}$.

\begin{equation} \frac{d[HBr]}{dt}=k_{p1}[Br][H_2]+k_{p2}[H][Br_2]-k_{r}[H][HBr]\label{ec115} \end{equation}

We apply the steady state approximation for H.

\begin{equation} \frac{d[H]}{dt}=0=k_{p1}[Br][H_2]-k_{p2}[H ][Br_2]-k_r [H][HBr]\label{ec116} \end{equation}

Solving equation $(\ref{ec116})$:

\begin{equation} k_{p2}[H][Br_2]=k_{p1}[Br][H_2 ]-k_{r}[H][HBr] \end{equation}

and substituting into $(\ref{ec115})$:

\begin{equation} \frac{d[HBr]}{dt}=2k_{p2}[H][ Br_2] \end{equation}

Applying the steady-state approximation to Br:

\begin{equation} \frac{d[Br]}{dt}=0=2k_{i}[Br_2][M]-\cancel{k_ {p1}[Br][H_2]}+\cancel{k_{p2}[H][Br_2]}+\cancel{k_r[H][HBr]}-2k_{t}[Br]^2[M] \end{equation}

Solving for $[Br]$:

\begin{equation} [Br]={\left(\frac{k_i}{k_t}\right)}^{1/2}[Br]^{1/ 2} \end{equation}

Solving for $[H]$ from equation $(\ref{ec116})$:

\begin{equation} [H]=\frac{k_{p1}[Br][H_2]}{k_{p2}[ Br_2]+k_r[HBr]} \end{equation}

Substituting $[Br]$ into this last equation, we get:

\begin{equation} [H]=\frac{k_{p1}\left(\frac{ k_i}{k_ {t}}\right)^{1/2}[Br_2]^{1/2}[H_2]}{k_{p2}[Br_2]+k_r[HBr]} \end{equation}

Therefore, the variation of [HBr] in time will be given by:

\begin{equation} \frac{d[HBr]}{dt}=2k_{p2}\frac{k_{p1}\left(\frac{k_i}{k_{ t}}\right)^{1/2}[Br_2]^{1/2}[H_2]}{k_{p2}[Br_2]+k_r[HBr]}[Br_2] \end{equation}

As $r =\frac{1}{2}\frac{d[HBr]}{dt}$

\begin{equation} r=k_{p2}\frac{k_{p1}\left(\frac{k_i}{k_{ t}}\right)^{1/2}[Br_2]^{1/2}[H_2]}{k_{p2}[Br_2]+k_r[HBr]}[Br_2] \end{equation}

Dividing the latter equation for $k_{p2}$ and $[Br_2]$ is obtained:

\begin{equation} r=\frac{1}{2}\frac{d[HBr]}{dt}=\frac{k_{p1 }\left(\frac{k_i}{k_t}\right)^{1/2}[Br_2]^{1/2}[H_2]}{1+\frac{k_r}{k_{p2}}\frac {[HBr]}{[Br_2]}} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.