For a reversible reaction $A\rightleftharpoons C$ of the first order, with kinetic constants for the forward reaction $k_1$ and reverse reaction $k{-1}$, we will determine $[A]$ and $[C]$ as a function of time , assuming that $[C]_0=0$. The variation of $[A]$ in time is given by the expression: \begin{equation}\label{1} \frac{d[A]}{dt}=-k_1[A]+k_{-1 }[C] \end{equation} From the stoichiometry we deduce, $[C]=[A]_0 -[A]$, substituting in $(\ref{1})$ \begin{equation} \frac{d[ A]}{dt}=-k_1[A]+k_{-1}\left([A]_0 - [A]\right) \end{equation}

Separating variables and integrating: \begin{equation} \int_{ [A]_0}^{[A]}\frac{d[A]}{k_{-1}[A]_0 -\left(k_1+k_{-1}\right)[A]}=\int_ {0}^{t}dt \end{equation} The integral is immediate natural type if we multiply and divide by the derivative of the denominator. \begin{equation} \frac{1}{-(k_1 +k_{-1})}ln\frac{k_{-1}[A]_0-(k_1 +k_{-1})[A]}{ \cancel{k_{-1}[A]_0}-(k_1 +\cancel{k_{-1}})[A]_0}=t \end{equation} We can only solve $[A]$ from this last equation: \begin{equation} ln\frac{k{-1}[A]_0 -(k_1 +k_{-1})[A]}{-k_1[A]_0}=-(k_1+k_{ -1})t \end{equation} \begin{equation} k_{-1}[A]_0-(k_1+k_{-1})[A]=-k_1[A]_0 e^{-(k_1 +k_{-1})t} \end{equation} \begin{equation} (k_1+k_{-1})[A]=[A]_0\left[k_{-1}+k_1 e^{- (k_1+k_{-1})t}\right] \end{equation} \begin{equation} [A]=\frac{[A]_0}{k_1+k_{-1}}\left[k_{ -1}+k_1 e^{-(k_1+k_{-1})t}\right] \end{equation} The calculation of $[C]$ can be done using the relation $[C]=[A]_0 -[A]$ \begin{equation} [C]=[A]_0\left[1-\frac{1}{k_1+k_{-1}}\left(k_1+k_1 e^{-(k_1+ k_{-1})t}\right)\right] \end{equation} Once equilibrium $t\rightarrow \infty$ has been reached, the concentrations of reactant and product will be given by: \begin{equation} [A]_ {e}=\frac{[A]_0k_{-1}}{k_1+k_{-1}} \end{equation} \begin{equation} [C]_{e}=\frac{[A]_0 k_1}{k_1+k_{-1}} \end{equation} The quotient between both equilibrium concentrations gives us a relationship between the kinetic constant of the forward and reverse reaction. \begin{equation} \frac{[C]_{e}}{[A]_{e}}=\frac{k_1}{k_{-1}}\;\; \rightarrow [C]_{e}=\frac{k_1}{k_{-1}}[A]_{e} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.