The deduction is analogous to thermal conductivity or viscosity with the difference that matter is transported.

The net flux of matter (in moles) through the $z_0$ plane is given by:

\begin{equation} J_z=J_{\uparrow}-J_{\downarrow}=\frac{dN_{\uparrow}}{N_A }-\frac{dN_{\downarrow}}{N_A} \end{equation}

The number of molecules passing through $z_0$ from below is given by:

\begin{equation} dN_{\uparrow}=\frac{1} {4}\bar{v}\frac{N_{\uparrow}}{V}\frac{N_A}{N_A}=\frac{1}{4}\bar{v}N_A\frac{c_{\uparrow }}{V} \end{equation}

Substituting $c_{\uparrow}$ for the concentration of molecules in the plane $z_0-2/3\lambda$

\begin{equation} dN_{\uparrow}=\frac{1 }{4}\bar{v}N_A\left[c_{j0}-\frac{2}{3}\lambda\left(\frac{dc_j}{dz}\right)_0\right] \end{equation}

Analogously we write the number of molecules that cross $z_0$ from above.

\begin{equation} dN_{\downarrow}=\frac{1}{4}\bar{v}N_A\left[c_{j0}+\frac{2}{3}\lambda\left(\frac{dc_j }{dz}\right)_0\right] \end{equation}

Substituting in $J_z$

\begin{equation} J_z=\frac{1}{4}\bar{v}\frac{-4}{3} \lambda\frac{dc_j}{dz}\frac{-1}{3}\bar{v}\lambda\frac{dc_j}{dz} \end{equation}

From which it follows that the diffusion coefficient is given by:

\begin{equation} D=\frac{1}{3}\bar{v}\lambda \end{equation}

A rigorous treatment gives us:

\begin{equation} D=\frac{3\pi}{ 16}\lambda \bar{v} \end{equation}

Substituting $\lambda=\frac{1}{\sqrt{2}\pi d^2}\frac{kT}{P}$ and $\bar{ v}=\left(\frac{8kT}{\pi m}\right)^{1/2}$, we are left with:

\begin{equation} D=\frac{8}{8d^2}\left( \frac{kT}{\pi m}\right)^{1/2}\frac{kT}{P} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.