It is defined as the distance that a molecule advances between two successive collisions. Let $\bar{v}_1$ be the average speed of type 1 molecules. In a time t it travels a distance $\bar{v}_1t$ where the number of collisions is $[z_{11}+z_{12}] t$. Therefore, the average distance traveled by a molecule 1 between two collisions is: \begin{equation} \lambda=\frac{\bar{v}_1}{z_{11}+z_{12}} \end{equation} If the gas is pure: \begin{equation} \lambda=\frac{\bar{v}_1}{z_{11}}=\frac{1}{\sqrt{2}\pi d_1^2}\frac {V}{N_1} \end{equation} Using the equation PV=NkT, V/N=kT/P. \begin{equation} \lambda=\frac{1}{\sqrt{2}\pi d_1^2}\frac{kT}{P} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.