For $n_i$ moles of an electrolyte of the type $M_{\nu_{+}}X_{\nu_{-}}$ we have:

\begin{equation} n_+=\nu_{+}n_i-n_{PI}\ ;\; \Rightarrow\;\;\; dn_+=\nu_{+}dn_i-dn_{PI} \end{equation}

\begin{equation} n_{-}=\nu_{-}n_i-n_{PI}\;\;\;\Rightarrow\; \;\; dn_{-}=\nu_{-}dn_i-dn_{PI} \end{equation}

Writing the Gibbs equation for dG in open systems

\begin{equation} dG=-SdT+VdP+\sum_{i}\mu_{ i}dn_{i}=-SdT+VdP+\mu_Adn_A+\mu_+dn_+ + \mu_-dn_- + \mu_{PI}dn_{PI} \end{equation}

Substituting $dn_-$ and $dn_+$ into this last equation

\begin{equation} dG=-SdT+VdP+\mu_Adn_A+\mu_+\left(\nu_+dn_i-dn_{PI}\right)+\mu_-\left(\mu_-dn_i-dn_{PI} \right)+\mu_{PI}dn_{PI} \end{equation}

The above equation can be simplified if we add electrolyte to the solution keeping temperature, pressure and amount of solvent constant.

\begin{equation} dG=\mu_+\left(\nu_+dn_i-dn_{PI}\right)+\mu_-\left(\mu_-dn_i-dn_{PI}\right)+\mu_{PI} dn_{PI} \end{equation}

Applying the equilibrium condition to the formation of ion pairs

\begin{equation} M^{Z_+}+X^{Z_-}\rightleftharpoons MX^{Z_{+}+Z_- }\;\;\Rightarrow \;\;\;\mu_{PI}=\mu_{+}+\mu_{-} \end{equation}

Substituting this last equation into dG and simplifying

\begin{equation} dG= \mu_+\left( \nu_+dn_i-\cancel{dn_{PI}}\right)+\mu_-\left(\mu_-dn_i-\cancel{dn_{PI}}\right)+(\cancel{ \mu_{+}}+\cancel{\mu_{-}})dn_{PI} \end{equation}

\begin{equation} dG=\nu_+\mu_+dn_i + \nu_- \mu_-dn_i \end{equation}

Therefore,

\begin{equation} \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_A}=\nu_+\mu_+ + \nu_-\mu_ - \end{equation}

This last equation represents the relationship between the chemical potentials of the salt and that of the ions.

\begin{equation} \mu_i=\nu_+\mu_+ + \nu_-\mu_- \end{equation}

We write the chemical potentials of the positive and negative ions on the molality scale and substitute into the above equation.

\begin{equation} \mu_+=\mu_{+}^{0}+RTln\gamma_{+}\frac{m_+}{m^0}\;\;\;\;\;\;\mu_ {-}=\mu_{-}^{0}+RTln\gamma_{-}\frac{m_-}{m^0} \end{equation}

\begin{equation} \mu_i=\nu_+\left( \mu_{+}^{0}+RTln\gamma_{+}\frac{m_+}{m^0}\right)+\nu_-\left(\mu_{-}^{0}+RTln\gamma_ {-}\frac{m_-}{m^0}\right) \end{equation}

Grouping terms

\begin{equation} \mu_i=\nu_+\mu_{+}^{0}+\nu_{-} \mu_{-}^{0}\left[\gamma_{+}^{\nu_+}\gamma_{-}^{\nu_-}\left(\frac{m_+}{m^0}\right )^{\nu_+}\left(\frac{m_-}{m^0}\right)^{\nu_-}\right] \end{equation}

Calling $\mu_{i}^{0}= \nu_+\mu_{+}^{0}+\nu_-\mu_{-}^{0};\;\;\;\gamma_{\pm}^{\nu}=\gamma_{+}^ {\nu_+}\gamma_{-}^{\nu_-}\;\;\;\nu=\nu_++\nu_-$. Therefore,

\begin{equation} \mu_i=\mu_{i}^{0}+RTln\left[\gamma_{\pm}^{\nu}\left(\frac{m_+}{m^0} \right)^{\nu_+}\left(\frac{m_-}{m^{0}}\right)^{\nu_-}\right] \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.