Let the competitive reactions be $A \stackrel{k_1}{\rightarrow}B$ and $A \stackrel{k_2}{\rightarrow}C$ of first order, we will determine $[A]$, $[B]$ and $[ C]$ as a function of time, assuming $[B]_0=[C]_0=0$. The variation of $[A]$ in time is given by the expression:

\begin{equation}\frac{d[A]}{dt}=-k_1[A]-k_2[A]\;\;\rightarrow \frac{d[A]}{dt}=(-k_1-k_2)[A]\end{equation}

Separating variables and integrating:

\begin{equation}[A]=[A]_0 e^{-( k_1+k_2)t} \label{ec1}\end{equation}

We now proceed to obtain the variation of $[B]$ with t

\begin{equation} \frac{d[B]}{dt}=k_1[A] \end{equation}

Substituting $[A]$ for $(\ref{ec1})$

\begin{equation} \frac{d[B]}{dt}=k_1[A]_0 e^{-(k_1+k_2)t} \end{equation}

Separating variables and integrating

\begin{equation} [B]=\left[\frac{k_1[A]_0}{-(k_1+k_2)}^{-(k_1+k_2)t}\right ]_{0}^{t} \end{equation}

Substituting the limits of integration

\begin{equation} [B]=\frac{k_1 [A]_0}{k_1 +k_2}\left[1-e^{ -(k_1+k_2)t}\right] \end{equation}

The variation of $[C]$ with t follows analogously from the differential equation $\frac{d[C]}{dt}= k_2[A]$

\begin{equation} [C]=\frac{k_2[A]_0}{k_1 +k_2}\left[1-e^{-(k_1+k_2)t}\right] \end{equation}

Dividing both concentrations at any inst before time we get:

\begin{equation} \frac{[C]}{[B]}=\frac{k_2}{k_1} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.