We are going to express Newton's Law as a function of linear momentum. We write Newton's Second Law,

\begin{equation} F_x=ma_x=m\frac{dv_x}{dt}=\frac{d(mv_x)}{dt}=\frac{dp_x}{dt} \end{equation}

Substituting into Newton's Law of viscosity:

\begin{equation} \frac{dp_x}{dt}=-\eta A\frac{dv_x}{dz} \end{equation}

$dp_x/dt$ (flow quantity of movement), represents the variation of the component and of the linear momentum of a layer located on one side inside the fluid, due to its interaction with the fluid on the other side. The molecular explanation of viscosity assumes momentum transport through planes perpendicular to the z axis.

Define the momentum flux per unit area and time: \begin{equation} J_z=\frac{1}{A}\frac{dp_x}{dt}=-\eta\frac{dv_x}{ dz} \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.