For a component in an ideal or dilute ideal solution, the chemical potential is given by: \begin{equation} \mu_{i}^{id}=\mu_{i}^{0}+RTlnx_i \end{equation} Solving for $ x_i$

\begin{equation} x_i=e^{[(\mu_i-\mu_{i}^{0})/RT]} \end{equation}

We define the activity of component i in a real solution as:

\begin{equation} a_i=e^{[(\mu_i-\mu_{i}^{0})/RT]} \end{equation} Activity plays the same role in real solutions as mole fraction in ideal ones.

Therefore, the chemical potential of a component in any solution (ideal or real) is given by:

\begin{equation} \mu_{i}=\mu_{i}^{0}+RTlna_i \end{equation}

The coefficient of activity, $\gamma_i$, measures the degree of divergence of the behavior of substance i with respect to the ideal behavior. \begin{equation} \mu_i-\mu_{i}^{id}=\mu_{i}^{0}+RTlna_i-(\mu_{i}^{0}+RTlnx_i)=RTln\frac{a_i} {x_i} \end{equation}

Where, $\gamma_{i}=\frac{a_i}{x_i}$, the activity coefficient. Clearing the activity, $a_i=x_i\gamma_i$.

\begin{equation} \mu_{i}=\mu_{i}^{0}+RTlnx_i\gamma_i \end{equation}

Both the activity and the activity coefficient depend on the same variables as the chemical potential $\mu_i$

\begin{equation} a_i=a_i(T,P,x_1,x_2,......)\;\;\Rightarrow \;\; \gamma_i=\gamma_i(T,P,x_1,x_2........) \end{equation}

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.