Canal YouTube | Química General
¡Suscríbete al nuevo canal de Química General! Durante este verano completaré todos los temas que se imparten en primero de carrera de las diferentes universidades. Cada tema en una lista de reproducción con el contenido ordenado
Ley de Henry
Solapas principales
La Ley de Henry nos da la presión de vapor de un soluto en una disolución diluida ideal. Para el disolvente sigue aplicándose la Ley de Raoult. $P_A=x_AP_{A}^{\ast}$
Sea una disolución diluida ideal que contiene un disolvente A y solutos (1,2...i). Vamos a calcular la presión que ejerce el soluto i en la fase gas.
Una vez alcanzado el equilibrio: \begin{equation} \mu_{i,l}(T,P)=\mu_{i,v}(T,P) \end{equation} Sustituyendo los potenciales químicos por sus valores \begin{equation} \mu_{i,l}^{0}(T,P)+RTlnx_{i}=\mu_{i,v}^{0}(T)+RTln\frac{P_i}{P^0} \end{equation} Agrupando términos y aplicando propiedades de logaritmos neperianos \begin{equation} \frac{\mu_{i,l}^{0}(T,P)-\mu_{i,v}^{0}(T)}{RT}=ln\frac{P_i}{x_iP^0} \end{equation} Despejando \begin{equation} \underbrace{P^0e^{\frac{\mu_{i,l}^{0}(T,P)-\mu_{i,v}^{0}(T)}{RT}}}_{K_H}=\frac{P_i}{x_i} \end{equation} Donde $K_H$ es la constante de Henry \begin{equation} P_i=K_Hx_i \end{equation}
Solubilidad de gases en líquidos
Para los gases poco solubles en líquidos, la disolución se aproxima a ideal, cumpliendo la Ley de Henry para el soluto. Como puede observarse en la gráfica, cuando la presión es elevada se produce una desviación respecto a Henry, debido a que la disolución deja de comportarse como diluida ideal.